Building uniformly random subtrees

نویسندگان

  • Malwina J. Luczak
  • Peter Winkler
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Laws for Sums of Functions of Subtrees of Random Binary Search Trees

We consider sums of functions of subtrees of a random binary search tree, and obtain general laws of large numbers and central limit theorems. These sums correspond to random recurrences of the quicksort type, Xn L = XIn+X ′ n−1−In+Yn, n ≥ 1, where In is uniformly distributed on {0, 1, . . . , n− 1}, Yn is a given random variable, Xk L = X ′ k for all k, and given In, XIn and X ′ n−1−In are ind...

متن کامل

Solution of in - class exercise 1 : Bounding a sequence

Induction step. Let n 2 and suppose that the lemma holds for all insertion permutations of size strictly less than n. Let π = (π(1), . . . , π(n)) be a permutation drawn uniformly at random from Sn. The rst element π(1) will become the root of the tree Tπ. Since the distribution of π(1) is u.a.r. from [n], the root of the tree is chosen uniformly at random, as required by the construction of ~ ...

متن کامل

Generating rooted trees of m nodes uniformly at random

A rooted tree is an ordinary tree with an equivalence condition: two trees are the same if and only if one can be transformed into the other by reordering subtrees. In this paper, we construct a bijection and use it to generate rooted trees (or forests) of any specified nodecount m uniformly at random. As an application, we see that in [6] Raddum and Semaev propose a technique to solve systems ...

متن کامل

Almost sure asymptotics for the random binary search tree

Consider the complete rooted binary tree T. We construct a sequence Tn, n = 1, 2, . . . of subtrees of T recursively as follows. T1 consists only of the root. Given Tn, we choose a leaf u uniformly at random from the set of all leaves of Tn and add its two children to the tree to create Tn+1. Thus Tn+1 consists of Tn and the children u1, u2 of u, and contains in total 2n+ 1 nodes, including n+ ...

متن کامل

Using Stein’s Method to Show Poisson and Normal Limit Laws for Fringe Subtrees

We consider sums of functions of fringe subtrees of binary search trees and random recursive trees (of total size n). The use of Stein’s method and certain couplings allow provision of simple proofs showing that in both of these trees, the number of fringe subtrees of size k < n, where k → ∞, can be approximated by a Poisson distribution. Combining these results and another version of Stein’s m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2004